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Presentation Outline and Learning Objectives

Unsourced random access
1. Motivation

2. CS and support recovery

3. Inference in large dimensions

4. Sparsifying collisions

5. Data fragmentation

6. Speading and tensors

Tools for complexity
▶ Graph-based constructions

▶ Concatenated codes

▶ Data fragmentation

▶ Approximate message passing

▶ Fast transform methods

▶ Information propagation

Additional Resources
▶ PDF slides and source code

▶ https://engprojects.github.io/mMTC/

▶ https://github.com/EngProjects/mMTC/ (branch: code)
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World Population versus Subscribers
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Fact 1: There are more active cellular subscriptions than there are people

World poputation: https://www.statista.com/; Cellular subscribers: https://www.worldometers.info/
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Visual Acuity and Display Technology

5.8 inch

2436× 1125

458 ppi

Apple Super Retina HD

Visual resolution

Peak visual resolution of 20/20 human is

1

Visual Acuity
=

1

20/20
min. of arc

≈ 0.0167 degrees

Sharp drops limit viewing angle to ±20 degrees

Screen distance
The distance at which super retina HD display
matches this resolution

Distance =
1

2
· 1

458
· cot 1

120
= 1.876 in

Fact 2: Display technology is reaching limit of visual acuity

4 / 154



Daily Use of Mobile Devices

Video and mobile statistics
▶ 63% of all US online traffic comes

from smartphones and tablets – Stone Temple

▶ More than 70% of YouTube viewing
happens on mobile devices – Comscore

▶ 65% of all digital media time is spent
on mobile devices – Business2Community

Fact 3 Americans spend
significant time on Mobile
Devices. Average time
spent on mobile phone in
US exceeds 3h45m per day
– eMarketer
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Quality of Experience

Current wireless landscape
▶ Growth and Market Penetration: Near saturation

▶ Number of connected wireless devices exceeds world population
▶ Almost every human who wants mobile phone has one (or more)

▶ Screen Quality: At limit of eye acuity
▶ Screens are near boundary of visual resolution
▶ Viewing distance is constrained by amplitude of accommodation

▶ Content-Rich Apps: Video watching & gaming are prevalent
▶ On average, a person spends 4 hours on a mobile device per day
▶ More videos are watched on phones than elsewhere

What’s Next?
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6G Envisioned Traffic Types
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▶ Hyper-Connected Experience: XR, Hologram, Digital Replica

▶ Ultra-Reliable and Low Latency Communications (URLLC)

▶ massive Machine Type Communications (mMTC) – Uplink
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An Evolving Wireless Landscape
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Conventional systems
▶ Human operators, sustained

connections

▶ Scheduling decisions based on channel
quality & queue length

▶ Acquisition of side information
amortized over long connections

Envisioned IoT environments
▶ Machine-to-machine communications

▶ Sporadic single transmissions from
large number of devices

▶ Minute payloads
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Information and Inference

Payload design guideline
▶ Most of information for inference is contained in first few bits!

9 / 154



Information and Inference

Payload design guideline
▶ Signals are tracked well using small, yet frequent updates

▶ ∆-Σ modulation
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Losing the Connection

Emerging M2M traffic characteristics
▶ Device density – Massive versus small

▶ Connectivity profile – Sporadic versus sustained

▶ Packet payloads – Minuscule versus moderate-to-long

Anticipated traffic characteristics invalidate the
acquisition-estimation-scheduling paradigm!

Cost Reward
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Cost Reward

T
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ely

T
hroughput
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Revival of Uncoordinated Access

A new reality
▶ Must address sporadic nature of machine-driven communications

▶ Transfer of small payloads without ability to amortize cost of
acquiring channel and buffer states over long connections

▶ Preclude use of opportunistic scheduling

Communication and identity

When number of devices is massive, with only subset of them active,
problem of allocating resources (e.g., codebook, subcarriers, signature
sequences) to every user as to manage interference becomes complex

Uncoordinated, Unsourced MAC
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Unsourced and Uncoordinated Random Access

=

Section Objectives
1. Review connection between unsourced random

access and compressed sensing

2. Understand challenges with URA and sparse
recovery in exceedingly large dimensional spaces

3. Introduce candidate design strategies to address
this research problem
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Uncoordinated Multiple Access Channel (MAC)

Encoder 1

Encoder 2

Encoder 3

Encoder 4

Encoder 5

Encoder 6

Device 1

Device 2

Device 3

Device 4

Device 5

Device 6

MAC
Channel

Joint
Decoder

LoRa-inspired parameters
▶ K active devices out of Ktot K ∈ [25 : 300]

▶ Each device has B-bit message, B is small ≈ 128

▶ n channel uses available, n ≈ 30, 000

M. Berioli, G. Cocco, G. Liva and A. Munari. Modern Random Access Protocols. Foundations and Trends in Networking, 2016
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Uncoordinated and Unsourced MAC

Encoder

Encoder

Encoder

Encoder

Encoder

Encoder

Message 1

Message 2

Message 3

Message 4

Message 5

Message 6

MAC
Channel

Joint
Decoder

No personalized feedback
▶ All devices use same codebook

▶ No explicit knowledge of identities

▶ Decoder returns unordered list

Mathematical model

y =
∑

i xi + z

where xi depends on message
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Gaussian Random Codes & Performance Bounds

Theorem: Fix P ′ < P. There exists an (M, n, ϵ) random-access code for
the K -user GMAC satisfying power-constraint P and

ϵ ≤
∑K

t=1
t
K min(pt , qt) + p0,

where constants p0, pt , and qt are complicated
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Uncoordinated MAC Frame Structure

▶ K active devices out of many, many devices

▶ Framework of gathering channel and queue states does not apply

Frame Length

Beacon Inference Slot 1 Slot 2 · · · Slot J − 1 Slot J Feedback

Time SlotPopulation Estimation Slot Count Reporting

▶ Beacon employed for coarse synchronization

▶ Same set of devices transmit within frame

▶ Frame may or may not have slots

▶ Each device may or may not use every slot
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URA Framework and Sparse Recovery

Encoder

Encoder

Encoder

Encoder

Message 1

Message 2

Message 3

Message K

...
...

Multiple
Access
Channel

Joint
Decoder

Characteristics of URA framework

▶ Every device employs same codebook f : {0, 1}B → Rn

▶ Decoder must produce unordered list of messages
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URA – Compiling Signal Dictionary

Signal dictionary

T
im

e

M
essag

e
in
d
ex

Message 00000 maps to column

f (00000)

Message Encoding:

f : {0, 1}B 7→ Rn

f (binary message) = signal
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URA – Compiling Signal Dictionary

Signal dictionary

T
im

e
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Message 00001 maps to column

f (00001)

Message Encoding:

f : {0, 1}B 7→ Rn

f (binary message) = signal
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URA – Compiling Signal Dictionary

Signal dictionary

T
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Message 00010 maps to column

f (00010)

Message Encoding:

f : {0, 1}B 7→ Rn

f (binary message) = signal
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URA – Compiling Signal Dictionary

Signal dictionary
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f (00011)

Message Encoding:

f : {0, 1}B 7→ Rn

f (binary message) = signal
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URA – Compiling Signal Dictionary

Signal dictionary

T
im

e
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Message 11111 maps to column

f (11111)

Message Encoding:

f : {0, 1}B 7→ Rn

f (binary message) = signal
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URA – Index Representation

Signal dictionarySignal dictionary

T
im

e
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m

f (11111)

CS-Style Format:

signal = Φm

24 / 154



URA – Index Representation

T
im

e
Binary message 00000011

Message index 00010 · · · 0

Codeword (modulated signal)
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Unsourced Random Access – CS Analogy

=

Encoder

Encoder

Encoder

Encoder

Message 1

Message 2

Message 3

Message K

...
...

Multiple
Access
Channel

Joint
Decoder
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Abstract CS Challenge

Problem setting
▶ Noisy compressed sensing

y = Φs+ z

where s is K sparse

▶ s has non-negative integer entries

▶ Φ.shape ≈ 32, 768× 2128

▶ z is additive Gaussian noise

Practical issues
▶ Width of sensing matrix is huge

▶ Existing CS solvers will not execute at that scale
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Compressed Sensing – Undersampling

=

Number of columns
N
u
m
b
er

o
f
sa
m
p
le
s

N
u
m
b
er

o
f
n
o
n
-zero

en
tries

Sensing matrix Φ

S
p
arse

vector
s

O
b
servation

y

Undersampling fraction δ:

height of Φ

width of Φ
=

n

N
→ δ
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Compressed Sensing – Sparsity
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Compressed Sensing – Phase Transitions
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▶ Undersampling fraction

δ =
n

N
=

32, 768

2128
= 2−113

▶ Measure of sparsity

ρ =
K

n
=

256

32, 768
= 2−7
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Classical Coding Techniques

Multi-user coding
▶ Matrix becomes codebooks

y = Φ1s1 +Φ2s2 + z

▶ Device picks code based on bits

▶ Well-studied for single user

▶ Fast decoding for large dictionary

Φ1 Φ2

Drawbacks
▶ Low complexity joint multi-user decoders are not available

▶ Devices may collide within codebook selection
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Time-Division Unsourced Random Access

Slot partitioning
▶ Observations become

yℓ = Φℓsℓ + zℓ

where ℓ is slot label

▶ Device gets slot based on message

▶ Channel uses divided among slots

Slot 1 Slot 2 Slot 3

Drawbacks
▶ Matrices remain wide 2128 / # slots

▶ Devices assigned randomly within slots
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Quest for Low-Complexity Unsourced MAC

Sparsifying collision via stochastic binning

n symbols

Slot 0 Slot 1 Slot 2 Slot 3 Slot 4 Slot 5

Schedule

r5r4r3r2r1

Random
Selection

Codewordsx(w5)x(w4)x(w3)x(w2)x(w1)

Messagesw5w4w3w2w1

x(w1)

x(w5)

x(w3)

x(w2) x(w4)

O. Ordentlich and Y. Polyanskiy. Low complexity schemes for the random access Gaussian channel. ISIT, 2017.
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Caveat – The Poisson Wall
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Data Fragmentation

Partition

Dim 216 Dim 216 Dim 216 Dim 216

· · ·

· · ·

· · ·

Drawbacks
▶ Unordered lists of fragments

▶ Need to perform disambiguation
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Section Summary

Problem formulation
▶ Noisy compressed sensing

y = Φs+ z

▶ URA is noisy support recovery

▶ Full control over Φ

▶ Width of sensing matrix is huge

▶ Uncoordinated access produces
stochastic binning

Possible URA design strategies
▶ Sparsifying collisions

▶ Advanced coding and spreading

▶ Data fragmentation
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Part I

Sparsifying Collisions:

Graph-Based Techniques and

Concatenated Coding
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Sparsifying Collisions

Graphs
▶ Quest for low complexity

URA (mMTC) schemes

▶ Draw inspiration from
graphical models

▶ Belief propagation

▶ Survey past successes 3 ways

1. LDPC/LDGM codes
2. Compressed sensing
3. Random access

Section goal

Gain ability to create graph-based
URA schemes
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Sparse Graph: Tools from Iterative Decoding

▶ Li variable dist. from node

▶ λi variable dist. from edge

▶ Rj check dist. from node

▶ ρj check dist. from edge

v1

v2

v3

v4

+ c1

+ c2

+ c3

x

y

i w.p. Li (i − 1) w.p. λi

+

j w.p. Rj

+

(j − 1) w.p. ρj

V. Zyablov, and M. Pinsker. Decoding complexity of low-density codes for transmission in a
channel with erasures. Problemy Peredachi Informatsii, 1974.
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Sparse Graph: Computation Tree

+ + +

+

Standard tricks
▶ Unravel bipartite graph

▶ Graph needs to be
locally tree-like

▶ Focus on outgoing
messages

▶ Analyze over random
code ensemble

M. Luby, M. Mitzenmacher, A. Shokrollahi, and D. Spielman. Efficient erasure correcting
codes. IEEE Trans. Information Theory, 2001.
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Sparse Graph: Analyzing Iterative Decoding

▶ x : Prob. outgoing message from variable node erased

▶ y : Prob. outgoing message from check node erased
(i
−

1
)
w
.p
.
λ
i

erased w.p. x
+

(j−
1
)
w
.p
.
ρ
j

erased w.p. y

▶ Outgoing variable message erased if all incoming check messages are
erased

x = E
[
y i−1

]
= λ(y)

▶ Outgoing check message erased if any incoming variable message is
erased

y = E
[
1− (1− x)j−1

]
= 1− ρ(1− x)

T. Richardson, and R. Urbanke. Modern Coding Rheory. Cambridge University Press, 2008.
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Sparse Graph: EXIT Chart
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Extrinsic Information Transfer (EXIT) chart

y = 1− ρ(1− x) x = λ(y) (flipped)
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Sparse Graph Code Based Compressed Sensing

=
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Support recovery problem

y = Φx+ z

▶ Sensing matrix Φ is n × N

▶ Variable z is additive noise

▶ Recover supp(x) = {i : xi ̸= 0}

Objective

Devise scheme with minimal number of measurements n and minimal
decoding complexity such that Pr(failure)→ 0 as N (and K ) →∞
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Support Recovery – Fundamental Limit

Optimal order for support recovery
▶ In the sub-linear sparsity regime, K = o(N), necessary and sufficient

conditions are shown to be:

C1K log

(
N

K

)
< n < C2K log

(
N

K

)
▶ In the linear sparsity regime, K = αN, it was shown that n = Θ(N)

measurements are sufficient for asymptotically reliable recovery.

▶ Minimum value xmin has to be bounded away from zero

M. Wainwright. Theoretic limits of support recovery. IEEE Trans. Information Theory, 2009.

S. Aeron, V. Saligrama, and M. Zhao. Information-theoretic bounds for compressed sensing.
IEEE Trans. Information Theory, 2010.
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Sparse Graph Code Based Compressed Sensing

▶ Sparse-graph codes peeling decoder framework for CS

▶ Sample and measurement complexities of order O(K logN)
for noisy setting1

▶ Complexities of O(K logN/K ) for noisy setting2

Biadjacency matrix

A =


1 0 0 1 0 1
0 1 1 0 1 0
1 1 0 1 0 0
0 0 1 0 1 1



X. Li, D. Yin, R. Pedarsani, S. Pawar, K. Ramchandran, Sub-linear compressed sensing for
support recovery using sparse-graph codes. IEEE Trans. Information Theory, 2019.

A. Vem, N. Thenkarai-Janakiraman, K. R. Narayanan. Sub-linear time compressed sensing for
support recovery using left and right regular sparse-graph codes. ITW, 2016.
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Tensoring Construction

A =


1 0 0 1 0 1
0 1 1 0 1 0
1 1 0 1 0 0
0 0 1 0 1 1

 S =

[
+1 −1 −1
−1 +1 −1

]

Sensing matrix is tensor-inspired product

A⊞ S =



+1 0 0 −1 0 −1
−1 0 0 +1 0 −1
0 +1 −1 0 −1 0
0 −1 +1 0 −1 0

+1 −1 0 −1 0 0
−1 +1 0 −1 0 0
0 0 +1 0 −1 −1
0 0 −1 0 +1 −1



Decoding checks

Design amenable to peeling decoding when x is real vector
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Random Access with Twist

slot 1 slot 2 slot 3 slot 4 slot 5 slot 6

Round
start end

m1 m1

m2 m2 m2

m3 m3 m3

m4 m4 m4

System model
▶ K uncoordinated devices, each with 1 packet to send

▶ Time is slotted; transmissions occur within slots

▶ Receiver knows full schedule, collection of packets in every slot

▶ Successive interference cancellation

E. Casini, R. De Gaudenzi, and O. Del Rio Herrero. Contention resolution diversity slotted
ALOHA (CRDSA): An enhanced random access scheme for satellite access packet networks. IEEE
Trans. Wireless Communications, 2007.
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Graphical Representation

▶ Tanner graph representation for LDGM transmission scheme

▶ Info nodes ↔ packets; Coded nodes ↔ received signals

▶ Message-passing (SIC) – peeling decoder for erasure channel

m1

m2

m3

m4

slot 1

slot 2

slot 3

slot 4

slot 5

Message Time

v1

v2

v3

v4

+ c1

+ c2

+ c3

+ c4

+ c5

Info Bit Coded Bits

G. Liva. Graph-based analysis and optimization of contention resolution diversity slotted
ALOHA. IEEE Trans. Communications, 2011.

E. Paolini, G. Liva, and M. Chiani. Coded slotted ALOHA: A graph-based method for
uncoordinated multiple access. IEEE Trans. Information Theory, 2015.

49 / 154



Decoder – Peeling Algorithm

Joint decoding via successive interference cancellation

slot 1 slot 2 slot 3 slot 4 slot 5

Instance of Random Access

device 2

m2

device 3

m3

device 4

m4 m4

device 1

m1

m2 m2

m3 m3

m4
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Decoder – Peeling Algorithm

Joint decoding via successive interference cancellation

slot 1 slot 2 slot 3 slot 4 slot 5

Step 1

device 2

m2

device 3

m3

device 4

m4 m4

device 1

m1

m2 m2

m3 m3

m4
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Decoder – Peeling Algorithm

Joint decoding via successive interference cancellation
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Decoder – Peeling Algorithm

Joint decoding via successive interference cancellation
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Decoder – Peeling Algorithm

Joint decoding via successive interference cancellation
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Decoder – Peeling Algorithm

Joint decoding via successive interference cancellation
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Decoder – Peeling Algorithm

Joint decoding via successive interference cancellation
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Decoder – Peeling Algorithm

Joint decoding via successive interference cancellation

slot 1 slot 2 slot 3 slot 4 slot 5

device 2

m2

device 3
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device 4

m4 m4

Step 4

device 1
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Representations: Schedule, Tanner Graph, Compressed
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Sparse Graph – Back to Unsourced Random Access

=

Sensing Matrix

n × N

M
essage

indices

R
eceived

S
ignal

▶ N = 2128 columns

▶ K ≈ 100 active devices

▶ Non-negative coefficients

▶ n ≈ 30, 000 measurements

▶ Complexity O(K logN)

▶ Support recovery
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URA – A Quest for Low Complexity

slot 1

slot 2

slot 3

slot 4

=

Restricted Sampling Matrix

▶ Partition into J slots

▶ ñ = n/J channel uses

▶ Aim is T -user adder channel

▶ Admits graphical representation
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URA – Proposed Scheme

Encoder

Encoder

Encoder

Encoder

Encoder

Encoder
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▶ Schedule selected based on message

▶ Devices can transmit in multiple sub-blocks

▶ Scheme facilitates successive interference cancelation

A. Vem, K. R. Narayanan, JFC, and J. Cheng. A user-independent successive interference
cancellation based coding scheme for the unsourced random access Gaussian channel. IEEE Trans.
Communications, 2019.
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What Really Happens within Slot?

w = (w1,w2)

πτw2
(cw1)

w1
Ch. Encoder

w2
A

Permute
cw1

πτw2
(cw1)

aTw2

aw2

c̃w

w2

πτw2
= f (w2)

▶ Message is partitioned into two parts w = (w1,w2)

▶ Every device uses identical codebook built from LDPC-type codes
tailored to T -user real-adder channel

▶ w1 is encoded with a spatially-coupled LDPC code and then
permuted based on w2

▶ w2 is compressed via CS matrix A and recovered through
non-negative ℓ1-regularized LASSO
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Sparse Unsourced Random Access

+ +

y

+ +

y

+ +

y

+ +

y

· · ·

· · ·

· · ·

· · ·

· · ·

Code Structure (·)

Permutation Pattern (·)

Permutation Pattern (·)

Code Structure (·)Slot 0

▶ Compressed sensing preamble with information bits

▶ Sparse graph-based random access scheme conducive to joint
decoding
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Sparsifying Collision with Graph-Based Techniques
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▶ Minimum Eb/N0 required as function of # of devices

▶ For T = 2, 4 and 4-fold ALOHA, prob. of decoding every slot ≥ 0.99

▶ Prob. recovered messages ≥ 0.96 given T -user decoding successful
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Part II

Data Fragmentation:

A Divide-and-Conquer Approach

to Compressed Sensing
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CCS – Fragmentation with Disambiguation

Encoding

Partition

Distinct compressive sensing instances

Stitching through outer code
▶ Split problem into sub-components suitable for CS framework

▶ Get lists of sub-packets, one list for every slot

▶ Stitch pieces of one packet together using error correction
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CCS – Sensing Matrix, Single-User Indexing
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Width of matrix is HUGE!
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CCS – Sensing Matrix, Single-User SPARC
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SPARC reduces width drastically.

8-SPARC: 2128 becomes 8 · 216
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Drastic Reduction in Matrix Width
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Coded Compressive Sensing – Device Perspective

Information bits

Outer code

· · ·

· · ·

Coupled
messages

Slot 1 Slot 2 Slot 3 Slot L

▶ Collection of L CS matrices and 1-sparse vectors

▶ Each CS generated signal is sent in specific time slot

V. K. Amalladinne, JFC, and K. R. Narayanan. A coded compressed sensing scheme for
unsourced multiple access. IEEE Trans. Information Theory, 2020.
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Coded Compressive Sensing – Multiple Access

Slot 1 Slot 2 Slot 3 Slot L

· · ·

· · ·

· · ·

List 1 List 2 List 3 List L

▶ L instances of CS problem, each solved with non-negative LS

▶ Produces L lists of K decoded sub-packets (with parity)

▶ Must piece sub-packets together using tree decoder
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Coded Compressive Sensing – Stitching Process

List 1 List 2 List 3 List L

Tree decoding principles
▶ Every parity is linear

combination of bits in
preceding blocks

▶ Late parity bits offer better
performance

▶ Early parity bits decrease
decoding complexity

▶ Correct fragment is on list
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Coded Compressive Sensing – Divide and Conquer

· · ·

· · ·

· · ·

▶ Data fragmentation and indexing

▶ Outer encoding for disambiguation
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Vignette – Compressed Sensing
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Sampling complexity:

c · K log
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CS Vignette – Basis Pursuit – LASSO
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Optimization objective with sparsity constraint

When Φ satisfies certain conditions, e.g., RIP, we can get
a good estimate for sparse s0 by solving convex program

ŝ = arg min
s
∥y −Φs∥2 + λ∥s∥1

▶ Extensive analysis and wide applications

▶ LP, QP, ISTA w/o momentum, NNLS, etc.
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CS Vignette – Underdetermined Linear Systems

Optimization task

minimize ∥s∥2
subject to Φs = y

Composite iterative solution

z(t) = y −Φs(t)

s(t+1) = ΦTz(t) + s(t)
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CS Vignette – Iterative Soft Thresholding
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Approximate message passing (AMP)

z(t) = y −Φs(t) +

Onsager︷ ︸︸ ︷
z(t−1)

n
∥s(t)∥0

s(t+1) = η
(
ΦTz(t) + s(t)

)
where η(s)k = (|sk | − αλ)+ sgn(sk), s(0) = 0, z(0) = y

▶ Application to high-dimensional spaces

▶ Low complexity, scalable framework
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CS Vignette – AMP
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Approximate message passing (AMP)

z(t) = y −Φs(t) +

Onsager︷ ︸︸ ︷
z(t−1)

n
∥s(t)∥0

s(t+1) = η
(
ΦTz(t) + s(t)

)
where η(s)k = (|sk | − αλ)+ sgn(sk), s(0) = 0, z(0) = y

▶ Application to high-dimensional spaces

▶ Low complexity, scalable framework
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CCS – Approximate Message Passing

▶ Connection between CCS indexing and sparse regression codes

▶ Circumvent slotting under CCS and dispersion effects

▶ Introduce denoiser tailored to CCS
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CCS Revisited

Columns are possible signals

T
im

e
→

▶ Bit sequence split into L fragments

▶ Each bit + parity block converted to index in
[
0, 2B/L − 1

]
▶ Stack sub-codewords into (n/L)× 2B/L sensing matrices
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Coded Compressed Sensing – Unified View

=

Sampling matrix

L-sparse message vector

R
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▶ Slots produce block diagonal (unified) matrix

▶ Message is one-sparse per section

▶ Width of A is smaller: L2B/L instead of 2B
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CCS – Full Sensing Matrix

=

Sampling matrix

L-sparse message vector

R
eceived

sign
al

▶ Complexity reduction due to narrower A

▶ Use full sensing matrix A

▶ Decode inner code with low-complexity AMP

A. Fengler, P. Jung and G. Caire. SPARCs for unsourced Random access. IEEE Trans.
Information Theory, 2021.
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CCS – AMP Architecture
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CCS – Approximate Message Passing

Governing equations
▶ AMP algorithm iterates through

z(t) = y − ADηt

(
r(t)

)
+

z(t−1)

n
divDηt

(
r(t)

)
︸ ︷︷ ︸

Onsager correction

r(t+1) = ATz(t) +Dηt

(
r(t)

)︸ ︷︷ ︸
Denoiser

Initial conditions z(0) = 0 and η0

(
r(0)

)
= 0

▶ Application falls within framework for non-separable functions

Task
▶ Define denoiser and compute Onsager correction term
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Marginal Posterior Mean Estimate (PME)

Proposed denoiser (Fengler, Jung, and Caire)

▶ State estimate based on Gaussian model

ŝOR (q, r , τ) = E
[
s
∣∣∣√Pℓs + τζ = r

]

=

q exp

(
− (r−

√
Pℓ)

2

2τ 2

)
(1− q) exp

(
− r2

2τ 2

)
+ q exp

(
− (r−

√
Pℓ)

2

2τ 2

)
with (essentially) uninformative prior q = 1−

(
1− 1

m

)K
fixed

▶ ηt

(
r(t)

)
is aggregate of PME values

▶ τt is obtained from state evolution or τ 2t = ∥z(t)∥2/n
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Performance of CCS Schemes
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▶ V. K. Amalladinne, JFC and K. R. Narayanan. A coded compressed
sensing scheme for unsourced multiple access. IEEE Trans.
Information Theory, 2020.

▶ A. Fengler, P. Jung and G. Caire. SPARCs for unsourced random
access. IEEE Trans. Information Theory, 2021.
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Incorporating Lessons from Enhanced CCS
▶ Integrate outer code structure into inner decoding

List 1 List 2 List 3
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Challenges
▶ CCS-AMP inner decoding is not a sequence of hard decisions

▶ List size for CCS-AMP is effective length of index vector

V. K. Amalladinne, A. K. Pradhan, C. Rush, JFC, K. R. Narayanan. Unsourced random
access with coded compressed sensing: Integrating AMP and belief propagation. IEEE Trans.
Information Theory, 2022.
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CCS – AMP Architecture with Outer Code
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Redesigning Outer Code

Properties of original outer code
▶ Aimed at stitching message fragments together

▶ Works on short lists of K fragments

▶ Parities allocated to control growth and complexity

Challenges to integrate into AMP

1. Must compute beliefs for all possible fragments

2. Must provide pertinent information to inner AMP decoder

3. Should maintain ability to stitch outer code
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Factor Graph Interpretation of Outer Code
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▶ Outer code with circular convolution structure

µap→sℓ ([v̂(ℓ)]2) ∝
1∥∥∥g(g)
ℓ,p
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FFT−1
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Outer Code and Mixing
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▶ Multiple devices on same graph

▶ Parity factor mix concentrated values

▶ Suggests triadic outer structure
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Redesigning Outer Code

Solutions to integrate into AMP
▶ Parity bits are generated over Abelian group amenable to

FWHT or FFT

▶ Discrimination power proportional to # parities

New design strategy

1. Information sections with parity bits interspersed in-between

2. Parity over two blocks (triadic dependencies)
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Belief Propagation – Message Passing Rules

v(1) v(2) v(4) v(5) v(7) v(8) v(10) v(11)

v(3) v(6) v(9) v(12)

v(13) v(14) v(15) v(16)

▶ Message from check node ap to variable node s ∈ N(ap):

µap→s(k) =
∑

kap :kp=k Gap
(
kap

)∏
sj∈N(ap)\s µsj→ap (kj)

▶ Message from variable node sℓ to check node a ∈ N(s):

µsℓ→a(k) ∝ λℓ(k)
∏

ap∈N(sℓ)\a µap→sℓ(k)

▶ Estimated marginal distribution

psℓ(k) ∝ λℓ(k)
∏

a∈N(sℓ)
µa→sℓ(k)
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Approximate Message Passing Algorithm

Updated equations

AMP two-step algorithm

z(t) = y − ADηt

(
r(t)

)
+

z(t−1)

n
divDηt

(
r(t)

)
︸ ︷︷ ︸

Correction

r(t+1) = ATz(t) +Dηt

(
r(t)

)︸ ︷︷ ︸
Denoiser

Initial conditions z(0) = 0 and η0

(
r(0)

)
= 0

▶ Denoiser is BP estimate from factor graph

▶ Message passing uses fresh effective observation r

▶ Fewer rounds than shortest cycle on factor graph

▶ Close to PME, but incorporating beliefs from outer code

R. Berthier, A. Montanari, and P.-M. Nguyen. State evolution for approximate message
passing with non-separable functions. Information and Inference, 2020.
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Preliminary Performance Enhanced CCS
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▶ Performance improves significantly with enhanced CCS-AMP
decoding

▶ Computational complexity is approximately maintained

▶ Reparametrization may offer additional gains in performance?
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CCS and AMP Summary

Summary
▶ New connection between CCS and AMP

▶ Natural application of BP on factor graph as denoiser

▶ Outer code design depends on sparsity

1. Degree distributions (small graph)
2. Message size (birthday problem)
3. Final step is disambiguation

▶ Many theoretical and practical challenges/opportunities exist

sj sℓ

λ
j

λ

µ

Coding plays increasingly central role in large-scale CS
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CCS via Coded Demixing

A1s1

A2s2

∑
AWGN

z y

▶ CCS can be extended to accommodate multiple classes of
heterogeneous users

▶ Each class of users employs its own sensing matrix and factor graph
for message encoding

▶ Every class transmits its signal concurrently over GMAC
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CCS via Coded Demixing

Coded Demixing

A1

A2

y = A1s1 + A2s2

A1ŝ1

A2ŝ2

▶ Through coded demixing, signals from various classes may be
separated by receiver and decoded individually

▶ Efficient AMP-based algorithm to recover signals from different
classes

▶ Requires signals to be sparse and the sensing matrices to have low
cross-coherence
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Coded Demixing for Single-Class URA

Bin 1 Bin 2 Bin 3

A1 A2 AΘ
+ +

▶ Create multiple bins with
(incoherent) matrices

▶ Devices pick a bucket randomly
and use CCS-AMP encoding

▶ Perform joint demixing
CCS-AMP decoding at access
point

2 2.2 2.4 2.6 2.8 3 3.2 3.4

10−1

100

PUPE = 5%

Eb/N0 (dB)

B = 1 B = 2

B = 4 B = 8

J. R. Ebert, V. K. Amalladinne, S. Rini, JFC, K. R. Narayanan. Coded demixing for
unsourced random access. IEEE Trans. Signal Processing, 2022.
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CCS – Coded Demixing Architecture
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Performance of CCS-AMP versus Previous Schemes
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▶ Sparse interleave division multiple access (IDMA) by A. K. Pradhan,
V. Amalladinne, A. Vem, K. R. Narayanan and JFC

▶ Sparse Kronecker-product (SKP) coding by Z. Han, X. Yuan, C. Xu,
S. Jiang and X. Wang
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Part III

Sparsifying Collisions:

Spread Unsourced Random Access

with Tensor/Hadamard Constructions
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Spreading or Stochastic Binning with Shadowing

k p m
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▶ Message is partitioned into two parts (p,m)

▶ Preamble p selects spreading sequence

▶ Payload m is encoded using traditional code: Polar/LDPC

▶ Tensor/Hadamard product is performed to create signal
Note: ck ⊗ sḱ or (ck ⊗ 1) ◦ sḱ
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Signal Structure and Energy Detector

▶ Outer product representation of sent signal

X = s · cT =

 | | |
s c1 s c2 · · · s cm
| | |

 sH X = ∥s∥22 c
T

▶ Outer product representation of received signal

Y =
∑
k

Xk + Z =
∑
k

sḱ · c
T
k + Z

sH
ḱ
Y = ∥sk∥22 c

T
k +

∑
ℓ ̸=k

〈
sḱ , sℓ́

〉
cTℓ︸ ︷︷ ︸

Noise like

+sH
ḱ
Z

▶ Energy detector for sequence identification

Set of active sequence = top arg
k

∥∥sH
ḱ
Y
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2
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Joint Decoding Architecture
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Signal

top argk
∥∥sH

ḱ
Y
∥∥
2

Energy detector

LMMSE

Symbol Estimates

Ŷ =
∑

k∈D sḱ ⊗ ck

Signal Reconstruction

SIC

1. Sequence identification

2. Symbol estimation

3. Bank of single-user decoders

4. Signal reconstruction

5. Successive interference
cancellation
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Intuition Behind Symbol Estimation

Measurement structure
(w/o collisions)

Y =

 | | |
y1 y2 · · · ym
| | |


=

∑
k

 |sḱ
|

 [
−ck−

]
+ Z

= SC+ Z

Approximate structure

Y ≈ SDC+ Z

≈
∑
k∈D

 |sḱ
|

 [
−ck−

]
+ Z

+

ỹ
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▶ Covariance(
SDS

H
D + I

)
▶ LMMSE

Ĉ ≈ SH
D
(
SDS

H
D + I

)−1
Y
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Spreading or Stochastic Binning with Shadowing

▶ Polar code

▶ Single-user likelihoods based
on estimated rows of

Ĉ ≈ SH
D
(
SDS

H
D + I

)−1
Y

▶ Joint successive cancellation
within decoding loop

▶ CRC added to codewords

▶ Sequences dictate frozen bits

▶ LMMSE can be tuned to
account for collisions

▶ Framework can accommodate
soft LDPC symbol estimates

u0 y0

u1 y1

u2 y2
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Single-user polar code
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Spread URA Single-Antenna

50 100 150 200 250 300

0

5

10

Number of active devices K

R
eq

u
ir
ed

E
b
/
N

0
(d
B
)

Random Coding

SIC T=4

Sparse IDMA

Truhachev et al.

Marshakov, et al.

Spread Polar

▶ Spread polar outperforms Irregular Repetition Slotted ALOHA
(IRSA) polar by E. Marshakov, G. Balitskiy, K. Andreev, A. Frolov

▶ Low complexity scheme by D. Truhachev, M. Bashir, A. Karami, E.
Nassaji performs well for large population

111 / 154



Signal Structure Revisited

▶ Note: c⊗ s or (c⊗ 1) ◦ s+

▶ New representation of sent signal

X = (c⊗ 1) ◦ s+ ⇒

 | | |
s+(1) c1 s+(2) c2 · · · s+(m) cm
| | |


with a different spreading column for every coded symbol

▶ One LMMSE matrix inversion per coded symbol period j

ĉ(j) ≈ SH
j,D

(
Sj,DS

H
j,D + I

)−1
yj

▶ Framework becomes more general and subsumes IRSA

▶ Match filter versus LMMSE
▶ Buying performance at expense of complexity
▶ Model becomes more brittle to fine synchronization

▶ Random subset of sequence set precludes CDMA-style designs
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Part IV

Quasi-Static Massive MIMO

Unsourced Random Access Channels
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Massive MIMO URA – Quasi-Static Channel

Encoder

Encoder

Encoder

Encoder

Encoder

Message w1

Message w2

Message w3

Message w4

Message w5

MIMO
AP

Joint
Decoder

Quasi-static signal model
▶ Signal received at time instant t within slot ℓ

y(t, ℓ) =
∑K

k=1 xk(t, ℓ)hk + z(t, ℓ)

▶ Number of receive antennas M ≫ 1

▶ Fading does NOT change within URA frame
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Massive MIMO URA – Quasi-Static Channel

Problem formulation
▶ Noisy MMV support recovery

Y =
∑
k

xk · hTk + Z

▶ Channel coefficients are not known

▶ Number of antennas M is large

▶ Channel is quasi-static

Possible URA design strategies
▶ Collisions may not be as much of an issue

▶ Complexity must be managed

▶ Strategies with pilots seem advantageous
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Proposed Encoding – Pilot plus Spreading

preamble payload

Cḱ

sḱ

pḱ

⊗

E
n
co
d
er

+

[
pḱ

ck ⊗ sḱ

]Signal

ḱ

▶ Encoding similar to spread URA, albeit with pilots

▶ Pilot sequence used for activity detection and channel estimation

▶ Payload m is encoded using traditional code: Polar/LDPC
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Joint Decoding Architecture MIMO
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Yp

Pilots

Y

Body

Energy detector Channel estimation

Symbol Estimates

Ŷ =
∑

k∈D x̂k · ĥT
k

Signal Reconstruction

SIC

Energy Detector

Pilot set = top arg
k

∥∥pH
ḱ
Yp

∥∥
2

LMMSE channel estimation

Ĥ =
(
σ2I+ P̂H P̂

)−1

P̂HYp
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Intuition Behind MIMO Symbol Estimation

Measurement structure
For symbol period j

Y[nj ,m]

≈ Sj diag(cj)Ĥ[:,m] + Z[nj ,m]

= Sj diag
(
Ĥ[:,m]

)
cj + Z[nj ,m]

where nj = [(j − 1)L+1: jL] spread
slice and m is antenna index

+

ỹ
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Stacked vector and LMMSE estimates Y[nj , 1]
...

Y[nj ,M]

 =


Sj diag

(
Ĥ[:, 1]

)
...

Sj diag
(
Ĥ[:,M]

)
 cj +

 Z[nj , 1]
...

Z[nj ,M]


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Alternate Scheme – Tensor-Based Modulation

Code Construction
Codebook is created based on tensors

{x1 ⊗ x2 ⊗ · · · ⊗ xd : x1 ∈ C1, x2 ∈∈ C2, . . . xd ∈ Cd}

Received signal is sum of K rank-1 tensors plus noise∑
k

x1,k ⊗ x2,k ⊗ · · · ⊗ xd,k ⊗ hk + z

▶ Decode with canonical polyadic decomposition (CPD)

▶ Iterative nonlinear least square algorithm on flattened outer products

▶ Pilots are not used in this scheme

A. Decurninge, I. Land, and M. Guillaud. Tensor-based modulation for unsourced massive
random access. IEEE Wireless Communications Letters, 2021.
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Alternate Scheme – Orthogonal Pilots
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▶ Hadamard pilots for fast processing: detection and estimation

▶ Polar code plus cyclic redundancy check (CRC)

▶ Excellent performance versus complexity tradeoff

M. J. Ahmadi and T. M. Duman. Unsourced random access with a massive MIMO receiver
using multiple stages of orthogonal pilots. ISIT, 2022.
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Spread URA Single-Antenna
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TBM w/o pilots, Pe = 0.1

Pilot/MF, Pe = 0.05

Orthogonal Pilots, Pe = 0.05

Pilot/LMMSE, Pe = 0.05

FASURA, Pe = 0.05

▶ Tensor-Based Modulation by A. Decurninge, I. Land, & M. Guillaud

▶ Orthogonal Pilots by M. J. Ahmadi & T. M. Duman

▶ Pilot/MF by A. Fengler, O. Musa, P. Jung, & G. Caire

▶ FASURA by M. Gkagkos, K. R. Narayanan, J.-F. Chamberland, and C. N.
Georghiades
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Part V

Fast Fading Massive MIMO

Unsourced Random Access Channels
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Massive MIMO-URA – Fast Fading Channel

Encoder

Encoder

Encoder

Encoder

Encoder

Message w1

Message w2

Message w3

Message w4

Message w5

MIMO
AP

Joint
Decoder

Signal model
▶ Signal received at time instant t with slot ℓ

y(t, ℓ) =
∑K

k=1 xk(t, ℓ)hk(ℓ) + z(t, ℓ)

▶ Number of receive antennas M ≫ 1

▶ Block fading – channel does not change within CCS slot

▶ Spatial correlation negligible – hk(ℓ) ∼ CN (0, IM)
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Multiple Measurement Vector – CS Interpretation

=

A(ℓ), n
L × 2vℓ

Γ(ℓ) = diag(γ(ℓ))

γ(ℓ) ∈ {0, 1}2vℓ

∥γ(ℓ)∥0 = K

H(ℓ), 2vℓ ×M

Y(ℓ), n
L ×M

▶ Received signal during slot ℓ: Y(ℓ) = A(ℓ)Γ(ℓ)H(ℓ) + Z(ℓ)

▶ Column yi (ℓ) of Y(ℓ) is the signal received at antenna i during slot ℓ

▶ H(ℓ) has entries drawn i.i.d. from CN (0, 1)
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Divide-and-Conquer, again – Outer Tree Code

· · ·

· · ·

· · ·

Y
(ℓ
)

L
is
ts

Message

Outer Codeword
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Covariance-Based Estimation

Idea

Since channel vectors are Gaussian, columns yi (ℓ) of Y(ℓ) are i.i.d.
Gaussian CN (0,Σℓ)

Computing covariance matrix

Σℓ = E
[
yi (ℓ)yi (ℓ)

H
]
=

1

M
E
[
Y(ℓ)Y(ℓ)H

]
=

1

M
E
[
(A(ℓ)Γ(ℓ)H(ℓ) + Z(ℓ)) (A(ℓ)Γ(ℓ)H(ℓ) + Z(ℓ))H

]
=

1

M

(
A(ℓ)Γ(ℓ)E

[
H(ℓ)H(ℓ)H

]︸ ︷︷ ︸
M In/L

Γ(ℓ)HA(ℓ)H + E
[
Z(ℓ)Z(ℓ)H

]︸ ︷︷ ︸
N0M In/L

)

= A(ℓ)Γ(ℓ)A(ℓ)H + N0In/L
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Covariance-Based Estimation

Measurement Y(ℓ) is Gaussian with covariance

Σℓ =
1

M
E
[
Y(ℓ)Y(ℓ)H

]
= A(ℓ)Γ(ℓ)A(ℓ)H + N0I

Use empirical average
▶ Let Σ̂Y(ℓ) =

1
MY(ℓ)Y(ℓ)H be empirical covariance matrix

▶ Constrained ML estimate of γ(ℓ) given by

γ∗(ℓ) = arg max
γ(ℓ)∈R2vℓ

+

log p(Y(ℓ)|γ(ℓ))

= arg max
γ(ℓ)∈R2vℓ

+

1

M

M∑
i=1

log p(yi (ℓ)|γ(ℓ))

= arg min
γ(ℓ)∈R2vℓ

+

(
log |Σℓ|+ trace

(
Σ−1

ℓ Σ̂Y(ℓ)

))
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Iterative Updates Based on Sherman-Morrison Identity

Algorithm Covariance Based Estimation via Coordinate Descent

Inputs: Sample covariance Σ̂Y(ℓ) =
1
MY(ℓ)Y(ℓ)H

Initialize: Σℓ = N0I,γ(ℓ) = 0
for i = 1, 2, . . . do

for k = 1, 2, · · · , 2vℓ do

Set d∗ =
ak (ℓ)

HΣ−1
ℓ (Σ̂Y(ℓ)Σ

−1
ℓ −In)ak (ℓ)

(ak (ℓ)HΣ
−1
ℓ ak (ℓ))2

Update γk(ℓ)← max{γk(ℓ) + d∗, 0}
Update Σ−1

ℓ ← Σ−1
ℓ −

d∗Σ−1
ℓ ak (ℓ)ak (ℓ)

HΣ−1
ℓ

1+d∗ak (ℓ)HΣ
−1
ℓ ak (ℓ)

Output: Estimate γ(ℓ)

▶ Component-wise maximization of the log-likelihood cost function

▶ Guaranteed to converge to at least a local minimum

▶ Good empirical performance

A Fengler, S Haghighatshoar, P Jung, G Caire. Non-Bayesian activity detection, large-scale
fading coefficient estimation, and unsourced random access with a massive MIMO receiver. Trans.
Information Theory, 2021
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Sherman-Morrison plus Tree Pruning

Algorithm Covariance Based Estimation via Coordinate Descent & SCLD

Inputs: Sample covariance Σ̂Y(ℓ) =
1
MY(ℓ)Y(ℓ)H

Initialize: Σℓ = N0I,γ(ℓ) = 0
for i = 1, 2, . . . do

for k ∈ Sℓ do

Set d∗ =
ak (ℓ)

HΣ−1
ℓ (Σ̂Y(ℓ)Σ

−1
ℓ −In)ak (ℓ)

(ak (ℓ)HΣ
−1
ℓ ak (ℓ))2

Update γk(ℓ)← max{γk(ℓ) + d∗, 0}
Update Σ−1

ℓ ← Σ−1
ℓ −

d∗Σ−1
ℓ ak (ℓ)ak (ℓ)

HΣ−1
ℓ

1+d∗ak (ℓ)HΣ
−1
ℓ ak (ℓ)

Output: Estimate γ(ℓ)

▶ Descent performed only over subset Sℓ ⊆ [2vℓ ] of columns in A(ℓ)

▶ Sℓ supplied by the outer tree decoder as side information

▶ Significant improvements in performance and complexity

V. K. Amalladinne, J. R. Ebert, JFC, and K. R. Narayanan. An enhanced decoding algorithm
for coded compressed sensing with applications to unsourced random access. MDPI Sensors, 2022.
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Successive Cancellation List Decoding

Slot 1 Slot 2 Slot 3

List 1 List 2 List 3

co
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n
p
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n
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g

▶ Active partial paths determine possible parity patterns

▶ Admissible indices for next slot determined by possible parities

▶ Inadmissible columns can be pruned before CS algorithm
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Outer Tree Decoding – Dimensionality Reduction

List of active paths

∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗

Admissible patterns

P
o
ssib

le
in
d
ices

▶ Every surviving path produces parity pattern

▶ Only fragments with these pattern can appear in subsequent slot

▶ On average, there are K (1 + E[Pℓ]) active paths
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Outer Tree Decoding with Column Pruning

Original sensing matrix

Possible indices

Pruned matrix

▶ For K small, width of sensing matrix is greatly reduced

▶ Actual sensing matrix is determined dynamically at run time

▶ Complexity of CS algorithm becomes much smaller
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Expected Column Reduction Ratio
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Slot 11 Slot 11 (sim)

▶ Parity allocation parameters, with wℓ + pℓ = 15,

(p1, p2, . . . , p10) = (6, 8, 8, 8, 8, 8, 8, 8, 13, 15)

▶ Pruning is more pronounced at later stages

▶ Effective width of sensing matrix is greatly reduced
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Performance Comparison
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Ratio of average run-times

▶ Number of antennas reduced by 23% when K = 100

▶ Gains in computational complexity more pronounced when K modest

▶ Reparametrization may offer additional gains
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Part VI

Providing Feedback:

Acknowledgments within URA
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Feedback in Unsourced Random Access

▶ Existing URA schemes do not
acknowledge reception of
messages

▶ Acknowledgement (ACK) from
BS is critical in certain
applications

▶ Challenges of feedback in URA:
▶ BS does not know which user

sent each message
▶ Large number of users

Base
Station

UE

UE

UE

UE

Section goal

Develop mechanism to acknowledge successful messages within URA

J. R. Ebert, K. R. Narayanan, and JFC. HashBeam: Enabling feedback through downlink
beamforming in unsourced random access. arXiv, 2022.
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HashBeam: Feedback via Downlink Beamforming

Hash
Beam

U
p
li
n
k
U
R
A

m1, . . . ,mK

h1, . . . , hK

Base Station

...

UE

UE

UE

UE

UE

ai

aj


ak


al

am


Downlink beamforming in URA
▶ BS has channel estimate hi and message mi for every decoded UE

▶ UE i and BS compute hash ai = f (mi ), f : {0, 1}B → CL

▶ si = ai ⊗ hi acts as identifier for UE i

▶ Idea: Leverage tensor si to inform UE i
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HashBeam: Feedback via Downlink Beamforming

U
p
li
n
k
U
R
A

a1 a2 . . . aK


h1 h2 . . . hK


⊗ ⊗ . . . ⊗

S = A ∗H

Wlmmse

α σ

1

HashBeam

RF
Front
End

LMMSE beamforming
▶ Exploit uplink-downlink duality

▶ WH
lmmse =

(
α2σ2I+ SHS

)−1
SH ∈ CK×LM

▶ Base station transmits v = Wlmmse1 ∈ CLM
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HashBeam: Feedback via Downlink Beamforming

Decoding feedback at UE

▶ UE i receives ri = [⟨hi , v1⟩+ zi,1, . . . , ⟨hi , vL⟩+ zi,L] ∈ CL

▶ UE i decision statistic: θi = ⟨ai , ri ⟩
▶ Khatri-Rao S = A ∗H and v = S

(
α2σ2I+ SHS

)−1
1

Hash
Beam

v1 v2 · · · vL



...

UE

UE

UE

UE

UE

ai

aj


ak


al

am


Decision statistic

θi = ⟨ai , ri ⟩
=

∑
j

(
a∗i,j⟨hi , vj⟩+ a∗i,jzi,j

)
=

∑
j

(
⟨ai,jhi , vj⟩+ a∗i,jzi,j

)
= ⟨si , v⟩+ ⟨ai , zi ⟩

Compare θi to quadratic decision
boundary to detect ACK
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Structure of Decision Statistic θ

K = 10, M = 10, L = 7,
SNR = 5 dB

K = 10, M = 5, L = 5,
SNR = 15 dB

Neyman-Pearson approach to quadratic decision region

▶ Fix PMD = 0.05 and minimize PFA
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HashBeam: Feedback via Downlink Beamforming
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Noiseless Case
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Performance: required channel uses
▶ Number of channel uses L scales as O(K )

▶ Adjust L to adapt to any number of antennas M or SNR

▶ Feedback is individualized - no common feedback signal

143 / 154



Unsourced Random Access – Future Research Avenues

Additional discussion points
▶ Antennas from one to massive MIMO: In-between?

▶ Unrolling URA iterative algorithms and better channel models

▶ Heterogeneous classes of URA devices

▶ Incremental redundancy for URA: Quest for universality

▶ Over-the-air federated learning

▶ Cell-free URA and distributed iterative schemes

▶ Connection between URA and sketching in TCS

Questions?

A. P. Sabulal and S. Bhashyam. Joint sparse recovery using deep unfolding With application
to massive random access. ICASSP, 2020.
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Universal Schemes and Incremental Redundancy

Challenge
▶ If device operates in isolation, it does not know total number of

active devices K nor slot count for current round

▶ Packet count and sparse graph should have proper distribution at
end of round

▶ One way to fulfill requirement is for rolling message count to possess
proper sparse distribution λs(·) at every time s

Can this be achieved?

Hybrid ARQ for URA

state 0 state 1 state 2 state 3 state 4 state 5

γ
(t)
0 γ

(t)
1 γ

(t)
2 γ

(t)
3 γ

(t)
4 γ

(t)
5
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Hybrid ARQ – Shifting from One Distribution to Another

1. Condition 1: Need enough probability mass to push over to neighbor

2. Condition 2: Can’t push probability mass past immediate neighbor

3. Conditions can be expressed mathematically in terms of first-order
stochastic dominance

X ⪯ Y whenever Pr(X > m) ≤ Pr(Y > m) ∀m

or, equivalently, cumulative distribution function (CDF) of X
dominates CDF of Y

147 / 154



Cell-Free Unsourced Random Access

▶ Expected channel quality as a function of geographical location

▶ Received power decays, at least, quadratically with distance

Message from Edge UE

B
S
1

B
S
2

BS1 BS2

Edge UE
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Asynchronous UMAC

Building Robust Sensing Matrices
▶ Extending CCS framework with low sample complexity

▶ Addressing issues pertaining to asynchrony

▶ Context of neighbor discovery
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Dealing with Jitter and Asynchrony

=

Distorted Matrix

In
d
ices

R
eceived

S
ig
n
al

Asynchronous Signals
▶ y = Ax̃+ z with ∥x∥0 = K

▶ A ∈ C(n+T )×2B unknown due to unknown random delays

▶ Max delay T known to the decoder
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Expanded Codebook through Sensing Matrix

=

Expanded Codebook A

(n + T )× 2B(T + 1) matrix

Accounts for all possible delays

K out of 2B(T + 1) sparse

M
essag

e
In
d
ices

R
eceived

S
ig
n
al

▶ Computational complexity of CS solvers: O(poly(2B(T + 1)))
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Sparsifying Collision & Data Fragmentation

▶ Hadamard matrix based compressing scheme with CSS

▶ Ultra-low complexity decoding algorithm

S. D. Howard, A. R. Calderbank, S. J. Searle. A fast reconstruction algorithm for
deterministic compressive sensing using second order Reed-Muller codes. CISS 2008
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Example: CHIRRUP

▶ Sensing matrix based on 2nd-order Reed-Muller functions,

ϕR,b(a) =
(−1)wt(b)√

2m
i (2b+Ra)T a

R is binary symmetric matrix with zeros on diagonal, wt represent
weight, and i =

√
−1

▶ Every column of form

|
xR,b

|
=


ϕR,b([0]2)
ϕR,b([1]2)

...
ϕR,b([2

m − 1]2)


[·]2 is integer expressed in radix of 2

▶ Information encoded into R and b

▶ Fast recovery: Inner-products, Hardmard project onto Walsh basis,
get R row column at a time, dechirp, Hadamard project to b
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Thank You!

More availabel information at: https://engprojects.github.io/mMTC/

This material is based upon work supported, in part, by NSF under Grants CNS-2148354,
CCF-2131106, and CCF-1619085

This material is also based upon work support, in part, by Qualcomm Technologies, Inc.,
through their University Relations Program

154 / 154


	Sparsifying Collisions:  Graph-Based Techniques and  Concatenated Coding
	Data Fragmentation:  A Divide-and-Conquer Approach  to Compressed Sensing
	Sparsifying Collisions:  Spread Unsourced Random Access  with Tensor/Hadamard Constructions
	Quasi-Static Massive MIMO  Unsourced Random Access Channels
	Fast Fading Massive MIMO  Unsourced Random Access Channels
	Providing Feedback:  Acknowledgments within URA

